Year | Reference |
---|---|
2003
|
Timing of IFN-beta exposure during human dendritic cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-beta-mediated regulation of IL-12 family cytokines and IL-18 in naive Th cell differentiation.
Journal of immunology (Baltimore, Md. : 1950)
2003 Nov 15;171: 5233-43
|
Type I IFNs, IFN-alpha and IFN-beta, are early effectors of innate immune responses against microbes that can also regulate subsequent adaptive immunity by promoting antimicrobial Th1-type responses. In contrast, the ability of IFN-beta to inhibit autoimmune Th1 responses is thought to account for some of the beneficial effects of IFN-beta therapy in the treatment of relapsing remitting multiple sclerosis. To understand the basis of the paradoxical effects of IFN-beta on the expression of Th1-type immune responses, we developed an in vitro model of monocyte-derived dendritic cell (DC)-dependent, human naive Th cell differentiation, in which one can observe both positive and negative effects of IFN-beta on the generation of Th1 cells. In this model we found that the timing of IFN-beta exposure determines whether IFN-beta will have a positive or a negative effect on naive Th cell differentiation into Th1 cells. Specifically, the presence of IFN-beta during TNF-alpha-induced DC maturation strongly augments the capacity of DC to promote the generation of IFN-gamma-secreting Th1 cells. In contrast, exposure to IFN-beta during mature DC-mediated primary stimulation of naive Th cells has the opposite effect, in that it inhibits Th1 cell polarization and promotes the generation of an IL-10-secreting T cell subset. Studies with blocking mAbs and recombinant cytokines indicate that the mechanism by which IFN-beta mediates these contrasting effects on Th1 cell generation is at least in part by differentially regulating DC expression of IL-12 family cytokines (IL-12 and/or IL-23, and IL-27) and IL-18.